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Figure 1. Magnetic field configuration
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Figure 2. Ray launching parameters

PUTTING A DAMPER 
ON THINGS: 

and how ray tracing might shed some 
light on the role of magnetic fields...

Mode depression in 
red giant stars

This poster was designed 
and presents research 

done by Dr. Cleo (Shyeh 
Tjing) Loi , a Junior Research 

Fellow in Astrophysics at 
Churchill College, Cambridge 

University. She currently works in 
the Astrophysical Fluid Dynamics 

Group within the Department of Applied 
Mathematics and Theoretical Physics (DAMTP), 

from which she received a PhD in 2019, for her 
thesis entitled 'Magnetic fields and 

stellar oscillations'. M
E

T
H

O
D

S

Mode depression: an ongoing mystery

Twisted-torus magnetic fields

Hamiltonian ray tracing

The study 
of stellar oscillations

Stars are self-gravitating fluid bodies in which waves can propagate. These waves may be excited 
through convection, flares and global instabilities. Constructive interference produces standing waves, 
i.e. global modes of oscillation. These can be detected by monitoring fluctuations in the brightness of a 
star, which arise from surface temperature fluctuations due to the fluid motions. Properties such as the 
frequencies, amplitudes and widths of peaks in the power spectrum contain information about a star's 
material properties. The study of stellar interiors by analysing their free modes of oscillation is called 
asteroseismology, and relies on a good theoretical understanding of the fluid behaviour of stars.

Amongst the 10,000+ red giant stars observed by the Kepler space telescope, it was found that in ~20% 
of these, their non-radial modes have amplitudes significantly lower than the rest of the population1. 
Radial modes appear not to be affected. This phenomenon is restricted to those stars massive enough 
to have previously had convective cores when on the main sequence2. With convection closely linked 
to dynamo action, and non-radial modes being those localised to the core (rather than the envelope, 
as for radial modes), this strongly hints at the possible role of a hidden, leftover magnetic field. 

However, preliminary magnetic theories 
predict 100% suppression of the core 
portion of affected modes3, which is 
inconsistent with observations4. Rather, 
they show that depression is only partial.

This work aims to study the problem of wave 
damping for realistic stellar models. The field 
configuration used here is an axisymmetric 
twisted torus, believed to be a good 
description of a magnetic equilibrium5. This 
is shown in Fig. 1, where the flux function

defines the field according to 

.

Wave propagation was modelled using 
Hamiltonian ray tracing, which calculates 
the path of wave packets launched in a 
system with known background properties. 
The time evolution of the position, x, and 
conjugate momentum (i.e. wavevector), k, 
are given by solving Hamilton's equations

where the Hamiltonian, H = H(x,k), is given 
by the wave dispersion relation, ω = ω(x,k). 
For magneto-gravity waves, this is

For each stellar model, 1200 gravity rays 
were launched into the core, from 30 
different colatitudes, θ0, and with 40 
different initial polarisations, α (see Fig. 2).
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Figure 3. Ray trajectory (B = 0)

RESULTS

Figure 4. Ray trajectory (B > 0) Figure 5. Ray trajectory (B > 0)

α = 58.5°

θ0 = 141°

α = 40.5°

θ0 = 99°

All other launch 
parameters 

identical

Trapping Reflection

Magnetic field?

NO YES
two possible outcomes...

Ray path lies in a single plane (top), as 
expected for a spherically symmetric 
Hamiltonian. The wave packet undergoes 
periodic bouncing between inner and 
outer turning points. Wavevector 
components (bottom) remain bounded 
and periodic.

Ray path does not lie in a single plane, with out-
of-plane motion occurring where the magnetic 
field is non-zero. The extent of the magnetised 
region is indicated with a green circle. Here the 
ray spirals irreversibly inwards, its group velocity 
decreasing and wavenumber diverging 
continuously.

Ray path also does not lie in a single plane, but 
otherwise is qualitatively similar to the case where 
B = 0 (Fig. 3). Motion takes the form of quasi-
periodic reflections, with bounded wavevector. 
Importantly, the only differences compared to Fig. 
4 (trapped ray) are the launch values of θ0 and α. 
Field strength/configuration, wave frequency, 
background stellar model etc. are identical.
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Figure 6. Comparison of wave dispersion relations Figure 7. Gravity and Alfvén frequencies

Figure 8. Distribution of trapped (blue) and reflected (red) rays
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When will magnetic fields be important?

Why are some rays trapped while others 
reflected?

The key feature distinguishing trapped rays from reflected ones 
lies in their time-dependent behaviour of the gravity and Alfvén 
contributions to the total wave frequency. These are shown in 
red and blue, respectively, in Fig. 7. For trapped rays, the red 
and blue envelopes strongly overlap, indicating acquisition of 
substantial Alfvén character. Thus trapped rays are those that 
encounter a critical surface, i.e. the resonance criterion is 
satisfied somewhere along their trajectory.

However, for reflected rays the two envelopes do not overlap, 
and the gravity component always dominates. Thus reflected 
rays are those that are able to avoid critical surfaces. How this 
might be possible can be deduced from Fig. 8, which shows the 
1200 launch points, colour-coded by outcome: blue for trapped 
rays and red for reflected. Different θ0 are plotted on different 
latitudes, while different α are plotted on different longitudes. 
Hence reflected rays are those that are equatorially orbiting 
with zonal polarisation vectors. These are able to minimise the 
Alfvén component by having near-perpendicular k and vA.

Acoustic

Alfvén
Gravity

With rotation neglected, the three main types of wave in a magnetised star are acoustic, Alfvén and 
gravity waves. Deep in red giant cores, fluctuations mainly take the form of gravity waves, while in the 
envelope, fluctuations tend to be acoustic in nature. In general, two wave modes will interact when 
their frequencies ω and wavenumbers k coincide, i.e. a resonance condition is met. The dispersion 
relations ω = ω(k) for the three wave modes are shown in the box below. While acoustic and Alfvén 

waves will only interact when the plasma beta cs/vA ~ O(1), thus requiring a 
minimum field strength, gravity and Alfvén waves will always interact in some 
part of parameter space, regardless of the field strength. This is given by the 
intersection point between the curves in the right panel of Fig. 6, and occurs at 
lower frequencies when the field is weaker. Solving for this intersection point 

gives the result that gravity waves 
with a given ω will resonantly 
interact with a magnetic field 
when the Alfvén speed reaches

This defines the concept of a 
critical surface, which, for a 
given field configuration and set 
of wave parameters, 
corresponds to the locus of points 
satisfying the resonance criterion. 
There, mode conversion may 
occur.

.
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DISCUSSION

For more details, please see the journal 
article: 'Magneto-gravity wave packet 
dynamics in strongly magnetized 
cores of evolved stars', by Shyeh Tjing 

Loi (2020), Monthly Notices of the 
Royal Astronomical Society, vol. 

493, no. 4, pp. 5726-5742

Comparison with observations
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Waves are excited by convective 
motions in the envelope. 

A fraction of these tunnel 
through the evanescent 

region and resume 
propagation in the stably 

stratified core.

If there is no magnetic 
field, the wave reflects 

near the centre and returns 
to the envelope, reinforcing 

the standing wave pattern. 
This gives rise to "normal" stars.

If a strong magnetic field is 
present, the wave experiences one 

of two outcomes, depending on its 
polarisation and where it impacts the 

magnetised region.

If the resonance criterion is 
satisfied, i.e. the wave meets a 

critical surface, it acquires 
significant Alfvén character 
and becomes trapped. Its 
wavenumber diverges and 
the energy is dissipated at 
small scales by viscosity/
resistivity.

However, this work has shown 
that even with a strong field, 

there exist trajectories that 
never meet a critical surface. 

These waves are reflected, 
allowing for partial energy return 

to the surface.

This partial energy return is required to 
explain observations of partial depression.

What is happening?

SH degree

T2

fT

τm (d)

V2
dep/V2

norm

l = 1

0.4

0.55

5.6

0.27

l = 2

0.03

0.65

64

0.81

l = 3

10-3

0.7

1.8×103

0.99

Table 1. Theoretical predictions
Figure 9. Variation with frequency (right panel from ref. 4)

low amplitudes
(high damping)

high amplitudes
(low damping)

ω = 8
ω = 10
ω = 12

The loss of energy via trapping causes damping of the modes, at a 
rate proportional to the area of the sphere covered by blue points 
in Fig. 8, which we call the trapping fraction, fT. This is a function of 
many parameters, including the field strength, wave frequency ω 
and the spherical harmonic degree l (Fig. 9, left). Measurements of fT 
using the ray tracing method suggest that trapping/damping rates 
are higher at lower frequencies, predicting the existence of stars 
with a positive gradient in mode amplitudes with frequency. Several 
of these are known in the literature, e.g. KIC 6975038 (Fig. 9, right). 
For more quantitative comparisons, note that the observable 

quantity is the visibility (V2) ratio 
between depressed and 
normal modes, given in terms of 
the convective and magnetic 
damping times τc ~ 15 d and τm by

,, where

and .

Measured/calculated values of relevant quantities are shown in Table 1, along 
with the predicted V2 ratio, for a 2M☉ red giant model generated using the stellar 
evolutionary code 'Modules for Experiments in Stellar Astrophysics6'. Values are 
shown for different spherical harmonic degrees, and the results appear to be 
quantitatively consistent with observations, as can be seen in Fig. 10 which shows 
the V2 values of the two populations of stars, for l=1. Horizontal lines have been 
drawn at the characteristic value of the normal population (white), and predicted 
value of the depressed population (yellow) according to Table 1. The yellow 
pentagram indicates the νmax value of the stellar model considered. 
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Figure 10. Observed dichotomy (ref. 2)
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